A Geometric Proof of the Feigin-frenkel Theorem
نویسنده
چکیده
We reprove the theorem of Feigin and Frenkel relating the center of the critical level enveloping algebra of the Kac-Moody algebra for a semisimple Lie algebra to opers (which are certain de Rham local systems with extra structure) for the Langlands dual group. Our proof incorporates a construction of Beilinson and Drinfeld relating the Feigin-Frenkel isomorphism to (more classical) Langlands duality through the geometric Satake theorem.
منابع مشابه
Vanishing of Cohomology Associated to Quantized Drinfeld-sokolov Reduction
We prove a vanishing theorem of the cohomology arising from the two quantized Drinfeld-Sokolov reductions (“+” and “−” reduction) introduced by Feigin-Frenkel and Frenkel-Kac-Wakimoto. As a consequence, the vanishing conjecture of Frenkel-Kac-Wakimoto is proved for the “−” reduction and partially for the “+” reduction.
متن کاملChiral Principal Series Categories I: Finite Dimensional Calculations
This paper begins a series studying D-modules on the Feigin-Frenkel semi-infinite flag variety from the perspective of the Beilinson-Drinfeld factorization (or chiral) theory. Here we calculate Whittaker-twisted cohomology groups of Zastava spaces, which are certain finite-dimensional subvarieties of the affine Grassmannian. We show that such cohomology groups realize the nilradical of a Borel ...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کامل